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Spreading in media with long-time memory
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We study the spreading of an agent in a medium whose susceptibility changes irreversibly at the first
encounter with the agent. This can model epidemics with partial immunization or population growth with
incomplete replenishment of food~in both cases the susceptibility for growth decreases after the first attack! or
epidemics in which the resistance is weakened by the first infection~increased susceptibility!. In such models
one can have no growth at all, compact growth, or annular growth. We delineate the phase diagram and study
the scaling behavior at the phase boundaries. Our arguments are supported by simulations in one and two
dimensions. Although our model does not involve multiple absorbing states, we claim that our results explain
the ‘‘nonuniversal’’ behavior seen in models with such states.@S1063-651X~97!07703-9#

PACS number~s!: 05.50.1q, 05.70.Ln, 02.50.2r
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I. INTRODUCTION

Despite much effort and considerable recent progress,
derstanding the phase transitions in models for the sprea
of a nonconserved agent in nonequilibrium systems rem
an interesting challenge. Such models can describe
spreading of epidemics or forest fires@1–4#, the growth of
populations, the activity of catalyzers@5,6#, and maybe even
the formation of stars and galaxies@7#. In all cases, it is
assumed that the agent cannot pop up spontaneously, bu
multiply itself arbitrarily by local offspring production.

In the simplest case, a medium is considered to be with
memory ~i.e., without permanent consumption of resourc
or immunization! and without quenched randomness. O
can then have an epidemic survivingin loco, provided the
susceptibility to new infections is sufficiently high and th
recovery rate is sufficiently low. The transition from the su
vival of the agent to its extinction is a critical phenomenon
the universality class of Reggeon field theory@8,9#, the
‘‘contact process’’@3,4#, or directed percolation~DP! @10#.

Nearly as simple is the case of perfect immunization@the
‘‘general epidemic process’’~GEP! @2##. Here the epidemic
cannot, of course, survivein loco, but an infinite epidemic is
nevertheless possible in the form of a solitary wave of ac
ity. When starting from a punctual seed, this leads to ann
growth, as seen, e.g., in the growth patterns~‘‘fairy rings’’ !
of some mushrooms. Again the transition between surv
and extinction is a critical phenomenon, this time in the u
versality class of ordinary~undirected! percolation@11,12#.

In the present paper, a generalization of these two cas
studied. More precisely, we shall discuss a process where
susceptibility changes after the first infection and rema
constant thereafter. If it changes to zero, we have the GE
it is not changed at all, we have DP. In intermediate cas
we can still observe either annular or compact growth, or
growth at all. The situation is different if the susceptibility
increasedby the first infection: in this case, annular grow
is not possible. Instead, a tendency to even more com
growth is then observed since the epidemic finds it harde
551063-651X/97/55~3!/2488~8!/$10.00
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invade new regions than to survive in regions it has alre
visited.

The main finding of this paper is that the critical susce
tibility for sustained survival is strictly independent of th
susceptibility to the first attack. This holds true for bo
cases, i.e., for increasing or decreasing susceptibility. On
other hand, scaling laws typically change. This is very sim
lar to the behavior of spin systems in the presence of s
faces. While the critical temperature is still given by th
bulk, there exist new surface critical exponents@13#. In this
analogy~which should not be taken too seriously, of cours!,
DP resembles the ‘‘special point’’ in a surface critical ph
nomenon.

Another interesting connection of our model is with ge
eralizations of DP involving multiple absorbing states@14–
20#. In DP, the ‘‘dead’’ state with no agent is unique an
non-fluctuating. It isabsorbingin the sense that a region i
this state can leave it only by invasion at its boundaries. O
of the best tested hypotheses in this field is that all conti
ous phase transitions in models with a unique absorbing s
are in the DP universality class@22,23#. But this leaves the
question open for models with multiple absorbing stat
There, one must distinguish between models withfluctuating
absorbing states~where ergodicity is not broken in the dea
sector of phase space! and models withfrozen absorbing
states. In the former, there is indeed only a single absorb
macrostate and it is not surprising that they are also in
DP class@18,20#.

In models with multiple frozen absorbing states, a de
configuration can change only if a new wave of activ
passes through it. Ergodicity in the dead sector is broken
the universality with DP is much more subtle. In@15,18,19#
it was found that scaling properties depend on the obs
ables and on the initial states considered. In all cases,
versality was found for thestationarybehavior in the active
phase and for the spreading behavior if the initial state co
cided ~statistically! with the dead state left after all activit
had died out. If, however, the initial inactive state w
‘‘atypical,’’ then the spreading behavior was changed. Mo
over, it was claimed in@19# that the critical point changes a
2488 © 1997 The American Physical Society
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55 2489SPREADING IN MEDIA WITH LONG-TIME MEMORY
well and that one finds scaling behavior with nonuniver
critical exponents.

We contend that the latter is not fully correct and has
be interpreted as a slow cross-over effect. We argue tha
multiplicity of absorbing states is not essential~for a related
discussion, see@21#!. What is important is that the spreadin
into an atypical initial state is characterized by a differe
effective susceptibility, whence we have precisely the beh
ior described in the first part of the Introduction.

In the next section we discuss an effective-field theory
this process. This will lead to a qualitative phase diagr
after the presentation of a lattice model in Sec. III. Numeri
simulations for two spatial dimensions are reported in S
IV A. They confirm the phase diagram and describe in m
detail the behavior at the phase boundaries. The situatio
slightly different in d51. Simulations for this case ar
shown in Sec. IV B. The paper ends with a discussion in S
V.

II. FIELD THEORY

The field theory discussed here is essentially the sam
for the spreading of the GEP presented in@24,25,21#. In this
model we have just two fields, one for the spreading ag
(c) and one for the ‘‘debris’’ left by the agent (f). After
being produced by the agent, the debris is completely ine
neither diffuses, decays, nor reproduces itself. But it can
on the agent by modifying its reproduction rater, its spon-
taneous death rates, and any other parameter influencing
spreading. For simplicity of discussion~and without restric-
tion of the generality of the model!, we shall assume tha
only r depends significantly onf.

Thus we model the spreading by a Langevin equation
c similar to that of Reggeon field theory@8#, but with r
replaced byr(f),

]c

]t
5D¹2c2sc1r~f!c21h~x,t !, ~1!

whereD is a diffusion coefficient andh(x,t) is a Gaussian
noise whose variance is proportional toc,

^h~x,t !h~x8,t8!&5d~x2x8!d~ t2t8!c~x,t !. ~2!

The equation forf is simply

]f

]t
5gc. ~3!

If we want to model a deteriorating~enhancing! influence
of the debris, we should takedr/df,0 (dr/df.0). Actu-
ally, with this ansatz, the susceptibility for spreading wou
in general change ateach infection, in contrast to our as
sumption that it changes only at the first. The latter co
easily be taken into account by modifying Eq.~3!, but we
believe that the difference is irrelevant in any case.

The critical point of marginalin loco survival can depend
only on theasymptoticvalue ofr,

r`5 lim
f→`

r~f!. ~4!
l
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Indeed, assume that the process is supercritical and tha
epidemic does in fact survivein loco. Then, obviously, the
density of debris will increase beyond any limit and the fu
ther evolution will depend only onr` . On the other hand, if
the process is subcritical, the decay is controlled byr(f) at
somef,`. But, as we pass through the critical point, th
final value off for surviving epidemics must diverge, thu
proving our statement. Notice that this doesnot imply that
the critical behavior is also governed byr` alone. In con-
trast, the critical behavior will in general be controlled by t
approach tor` .

Let us now assume thatdr/df,0. In this case, the
spreading at the border of the activity region is easier tha
its bulk. Thus the spreading of the border will be supercr
cal if the bulk is critical, while the bulk is subcritical if the
edge is critical. As was shown in@24,25#, the above model
describes the critical spreading of the GEP in the latter ca
Between these two cases, one has annular growth: the
demic can survive in a propagating solitary wave~a
‘‘front’’ !, but it dies out in its wake. Ifr`5rc , the critical
value for in loco survival, the density of activity at a fixed
position in the bulk will decay with some power of time
which isnot the same as for the decay of activity in DP~i.e.,
in the critical process with constantr5rc). More precisely,
we expect the decay to beslower than in DP~here we as-
sume that the epidemic had started in a finite region; the c
of infinite ‘‘seeds’’ will be discussed below!.

For dr/df.0, spreading is more difficult than surviva
Thus there is no annular growth and we have a unique c
cal point. Again, this is attained whenr`5rc , but this time
the critical spreading will be slower than in DP and the dec
of the activity at the critical point will be faster.

III. LATTICE MODEL

We have made no attempt to compute the critical beh
ior~s! in the above field theory analytically. Instead, we ha
simulated a lattice model that we believe to be in the sa
universality class.

In 211 dimensions, this model is a generalization of d
rected bond percolation on the bcc lattice@26–28#. Stated
differently, it is the spreading on a square lattice with d
crete time such that each site stays active for only one un
time after having been activated~infected!. Each bond can
transmit the agent with a certain prescribed but annea
probability. The generalization consists in allowing two d
ferent states for each site. Initially, all sites are in thevirgin
statev. After an agent has passed through them, they go o
into the usedstateu in which they remain thereafter. Th
probability of transmission through a bond depends on
state of the site on the other side: it isq for bonds connecting
to virgin sites andp for bonds connecting to used sites. F
q5p, this model reduces to directed bond percolation
described in@26–28#. For p50, on the other hand, it coin
cides with the spreading of ordinary bond percolation on
square lattice treated as a GEP@12,29#.

According to the discussion of Sec. II, we expect t
phase diagram to look qualitatively as in Fig. 1. F
p.pc50.287 34@28#, we have a finite probability for com
pact infinite growth of an epidemic starting from a sing
seed. Forp,pc andq,pc , the epidemic dies with probabil
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2490 55GRASSBERGER, CHATE´ , AND ROUSSEAU
ity 1. The same is still true to the left of a curveq5qc(p),
which connects the DP pointq5p5pc with the critical point
q50.5,p50 for bond percolation on the square lattice@11#.
To the right of this line we have annular growth. All alon
the lineq5qc(p),pc , the critical behavior should be tha
of the GEP~i.e., of the spreading of ordinary percolation!.

Most simulations were done according to the single-s
spreading paradigm@31#. We started from a single infecte
site and stopped if the epidemic died out or if a preset ma
mum time was reached. This time was always chosen s
that the boundary of the lattice was never reached, whe
the simulations are free of finite-size~but, alas, not of finite-
time! effects, with the potential difficulties, though, of k
netic roughening effects~see below!.

The compact-growth–annular-growth border is mu
harder to study by means of simulations starting from
single active site. Very large lattices would be needed si
the active region grows at a finite speed. In addition, si
we have to simulate thesupercritical annular growth, the
simulations would involve very large numbers of active sit
This would make them very slow.~We should mention here
that we used lists of active sites in order to speed up
simulations compared to a brute force updating of the en
lattice.! For this reason we have used a different geometr
this case. Instead of an infinite lattice with a single site s
leading to annular growth, we used a strip geometry wit
planar growth front in a rectangular lattice of sizeL'3L i
(L i.L') with periodic boundary conditions. The seed co
sisted of an entire line of active sites. Initially, two fron
emanated from this seed, but only one of them was follow
By ‘‘cleaning’’ the lattice ahead of the leading edge of th
front, we ensured that it always invaded virgin territory. Th
cleaning of course eventually destroyed the other front, b
allowed us to follow the evolution for long times durin
which the activity looped several times across the lattice

Irrespective of the geometry used, the critical behav
near the boundaries of the annular-growth region migha
priori be influenced by the roughness of the interface se
rating the virgin territory ahead from the ‘‘used’’ sites. Typ
cally, the width of this interface increases with time~to even-

FIG. 1. Phase diagram for the model. All along the curved li
one has the critical behavior of the GEP, while DP behavior is o
observed at the point where the straight and curved lines mee
d
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tually saturate in strip geometry! and/or with size. This calls
for a cautious interpretation of the simulations with resp
to finite-time or finite-size effects.

IV. SIMULATIONS

A. D52

In a first set of runs we determined precisely the GEP l
connecting the DP point with the point (p50,q51/2) and
verified that all along this line we do indeed see a crosso
to GEP behavior. For this we measured the average
N(t) of the epidemic~number of infected sites at timet), the
survival probabilityP(t), and the squared spatial extensio
R2(t). The latter is defined as the average overxi

2 , the aver-
age being taken over all active sites in surviving epidem
These results are shown in Figs. 2–4. Each figure cont
ten curves, each corresponding to one of the points indica
in Fig. 1. The two extreme points@for p5q5pc and for
(p50,q51/2)# are indicated by solid lines in Figs. 2–4
They show the scaling behavior of DP and of GEP, resp

,
y

FIG. 2. log-log plot of the average numberN(t) of active sites
at the no-growth–annular-growth boundary. Each curve co
sponds to one of the ten points indicated in Fig. 1.

FIG. 3. Similar to Fig. 2, but for the survival probabilityP(t).
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55 2491SPREADING IN MEDIA WITH LONG-TIME MEMORY
tively. For the other eight curves, the value ofp was chosen
first andqc(p) was determined such thatP(t) was parallel to
the GEP curve for larget. In all three plots, the expecte
crossover is clearly seen: close to the DP point and for sm
t we have approximately DP behavior, but for larger tim
and/or for points not close to DP we observe GEP scal
This is most easily seen in the behavior ofR2(t), but it is
also evident from the other two plots. Of course our meth
to determineqc favored GEP-type scaling forP(t), but even
for this variable it is far from trivial that we could find an
values ofq where such a clear crossover is seen. In fact,
could not find values ofq for which DP scaling is observe
at large times.

Next we tried to verify the prediction that the compac
growth–no-growth transition is atp5pc , independent of the
value ofq. This seems counterintuitive, as one might exp
that the critical value ofp is increased whenq,p, an ex-
pectation indeed claimed to be verified in@19#. We thus fixed
q at 0.25 ~a value well belowpc) and performed runs a
several values ofp>pc . Again we measuredN(t),P(t), and

FIG. 4. Similar to Fig. 2, but for the ratioR2(t)/t, where
R2(t) is the average squared distance of active sites from the s

FIG. 5. log-log plot of the average numberN(t) of active sites
for q50.25, for five values ofp at or slightly abovepc .
ll
s
g.

d

e

t

R2(t). Results are shown in Figs. 5–7. In none of these p
do we see any hint of scaling. If we were looking for scali
behavior, we would thus have to choose another~bigger!
value ofp. But even then we would have to accept signi
cant deviations from scaling. The fact that the transition
indeed atp5pc50.287 34 is most clearly seen from Fig.
for all values.pc , N(t) first decays, but then turns sharp
to increase at very late times. This is easily understo
Sinceq,pc , the cluster at first~when nearly all sites are
virgin! has a very small probability of survival andN(t)
drops much faster than for critical DP. But ifp.pc , some
clusters will survive nevertheless, and once they ha
reached a critical size, they will even have a chance to g
in the now friendly environment. Figures 6 and 7 support t
picture, though much less clearly.

A more quantitative argument is as follows. Assume
cluster has survived, in a run atp5pc1e, up to a timet0 at
which it has reached a sizeR(t0)@1. Inside this cluster we
have essentially unmodified DP, hence the density of ac
sites is N;eb and the total number of active sites
;Rdeb ~we keep the argument general by allowing any
mensionalityd). The fluctuations inside are normal~we are

d.
FIG. 6. Similar to Fig. 5, but for the survival probabilityP(t).

FIG. 7. Similar to Fig. 5, but for the ratioR2(t)/t.
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2492 55GRASSBERGER, CHATE´ , AND ROUSSEAU
not at the critical point! and thus the rate of extinction b
spontaneous fluctuations is given bydP/dt;2Pe2t/T with
a characteristic timeT;exp(N). If the cluster does not be
come extinct, on the other hand, its radius will increase
early. Even if this increase is arbitrarily slow, the lim
lnP(`)5lnP(t0)2*t0

`dte2t/T will be finite, hence the cluste

will have a finite chance to survive forever.
After having accepted that the critical value ofp is equal

to pc for all q<pc , we can now study theq dependence o
the critical behavior. Figures 8–10 display the three qua
tiesN(t), P(t), andR2(t)/t. For ease of interpretation, Fig.
now shows the ratioN(t)/P(t), which is the number of ac
tive sites per surviving epidemic. Each curve correspond
a different value ofq, while p5pc for all of them.

The clearest indication of scaling is forN(t)/P(t), for
which we get a reasonably good fit with

N~ t !/P~ t !;ta, a50.47. ~5!

The situation is worse forR2(t). Here the curves are strongl
bent except for very smallq. But they seem to follow

FIG. 8. log-log plot of the average number of active sitesper
surviving cluster N(t)/P(t), for p5pc50.287 34 and for six values
of q below pc .

FIG. 9. Similar to Fig. 8, but for the survival probabilityP(t).
-

i-

to

straight lines for larget, suggesting an asymptotic power la
R2(t);tz. The exponentz seems to depend weakly onq. It
increases fromz'0.46 for q50.1 to z'0.65 for q>0.22.
All these numbers should of course be taken with some c
tion. Since the density inside a surviving cluster should
crease with time, we must havea,z, which is just verified
for small q in the above data. We warn the reader that
have no good theoretical argument for power laws to h
and the data might well follow some other law asympto
cally. ForP(t), indeed, Fig. 9 suggests no power law at a
We tried stretched exponentials for this observable, with
much more success and, we should say, with no better t
retical arguments either. Needless to say, the absence
power law forP(t) prevents any hyperscaling relation fro
holding.

For the annular-growth–compact-growth transition, w
used the strip geometry. We first checked thatp5pc is in-
deed the threshold for sustained activityin loco for all
q.pc . For p,pc , the density of active sites decays to ze
in the wake of the activity wave, while it tends to a positiv
value forp.pc .

Next, we were interested in the densityr(j,t) of active
sites at a distancej behind the leading edge of the wave. A
threshold, we expect this quantity to reach a limitr(j) for
t→`, which scales as

r~j!;j2d, ~6!

whered50.45160.003 @28# is the exponent governing th
decay of the density of active sites in DP in 211 dimen-
sions, starting from an entire active line perpendicular to
growth direction. Equation~6! can be understood as follows
For q.p5pc , the front propagates at a finite speedv, so
thatj is up to a factor 1/v equal to the time elapsed betwee
the passage of the front and the measurement of the den
On the other hand, the evolution of DP clusters is slow co
pared to a propagation with finite speedt;xz/2;x0.566

againstt;x, whence the passage of the front through a giv
point can be considered as instantaneous from the poin
view of an evolving DP cluster. Thusr(j) indeed measures

FIG. 10. Similar to Fig. 8, but for the ratioR2(t)/t.
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FIG. 11. Snapshot of the lattice in the annular-growth regime (p50.27,q50.6). The transverse size isL'5128. Active, virgin, and used
sites are in black, white and gray, respectively. The front is moving from left to right.
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the density of active sites at timet5j/v after all sites had
been infected simultaneously and decays according to
~6!.

Measuringr(j,t) is not easy. Figure 11 shows a typic
snapshot of the activity wave in the annular-growth regi
near threshold and Fig. 12 the corresponding~averaged! den-
sity profiles. In such a regime, i.e., forq not too close to
pc , the leading edge of activity is almost identical to t
virgin-used interface. Its profile, which is close to Gaussi
provides a measure of its roughness, which is simply
width w. For q51, the interface is flat (w50). For
pc,q,1,w initially grows with time and then saturates at
valuew(p,q,L'). On general grounds, we expect the inte
face to be in the universality class of the Kardar-Par
Zhang model@30# and thusw2;L' . For (q,p)→(pc ,pc),
the situation is much more complex, as we havev→0,
w→`, even at fixed transverse size. This intricate limit
left for future work, together with the study of the interfac
along the annular-growth–no-growth boundary.

At any rate, the study of the annular-growth–compa
growth boundary, even forq not too close topc , already
involves a rather delicate limit in whichj, L' , and t all
have to go to infinity, but not in an arbitrary order. We ha

FIG. 12. Averaged~normalized! density profile of active sites
~main graph! and distribution of thex location of the sites of the
virgin-nonvirgin interface~inset!. Same parameters as in Fig. 1
The quantityx plotted horizontally is the distance from the leadin
edgexmax.
q.

e

,
e

-
-

-

to takeL'→`, since otherwise the front will die with prob
ability 1. We have used typicallyL'51024, j<L i52048,
and t<23105. With this value ofL'51024 and for the
values ofq studied (0.5<q<1), the roughness of the fron
was typically<50. This is indeed much smaller thanL i , but
it induces an inherent uncertainty in the definition ofj,
which renders difficult the estimation of critical exponen
In practice, the absolute position of the activity wave can
measured in several ways. For the regimes of interest h
we used the positionxmax of the leading edge~which ad-
vances regularly with velocityv). However, to check the
expected scaling~6!, we need to set an ‘‘effective zero’’ fo
j. In view of this, we have adopted a rather empirical p
cedure. We have definedj5xmax2D(q)2x, whereD(q) is
a positive constant determined such thatr(j) showed the
best scaling~i.e., produced the straightest lines for largej on
a log-log plot!. Not surprisingly, we find thatD(q) is of the
same order and behaves exactly asw(pc ,q,L'). The results
of this procedure are shown in Fig. 13. We indeed see n
scaling with an exponent close tod'0.45, independent o
q.

FIG. 13. log-log plots of the densityr(j) of active sites a dis-
tancej behind the progressing front of activity. The normalizatio
is set tor(1)51 for all curves. See the text for the precise defin
tion of j. All curves are forp5pc .
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2494 55GRASSBERGER, CHATE´ , AND ROUSSEAU
B. D51

The above arguments should be slightly modified in
case of one spatial dimension. In this case there is no u
rected percolation spreading~the critical point is atq51), so
there can be no annular growth either. Thus the phase
gram shown in Fig. 1 has to be modified such that the cur
boundary is horizontal. As a result, only transitions betwe
no growth and compact growth are possible. These tra
tions are different depending on whetherq is below, at, or
abovepc .

We have simulated essentially the same model as in
III. The threshold for directed percolation is now
pc50.644 701@32#. We show only the results from simula
tions atp5pc . For all p.pc , one has compact growth, an
for all p,pc and q,1, the process dies out exponentia
fast.

In Figs. 14–16 we show the by-now familiar quantiti
N(t)/P(t),P(t), andR(t)2/t. As expected, we again find

FIG. 14. log-log plot of the average number of active sites
surviving clusterN(t)/P(t), for spreading in one dimension a
p5pc50.6447 and for 13 values ofq. Of these, three are abov
pc and nine are below.

FIG. 15. Similar to Fig. 14, but for the survival probabilit
P(t).
e
i-

ia-
d
n
i-

c.

decrease ofP(t) that is faster than any power oft for all
q,pc , while it seems to follow a nonuniversal power fo
q.pc . More surprising than this is the behavior o
N(t)/P(t) and ofR(t)2/t: after marked deviations from an
power laws for smallt, they both seem to scale fort→`,
with the critical exponents of DP. Thus the nonuniversal b
havior seems in this case to affect onlyP(t) and the correc-
tions to scaling, but not the asymptotic behavior
N(t)/P(t) andR(t)2/t. This is in very strong contrast to th
behavior ford52, whereR(t)2 clearly does not show DP
scaling forq,pc .

The most likely explanation for this surprising differenc
is that an epidemic in one dimension must create a com
set of used sites on which it survives, while a tw
dimensional epidemic can survive on a fractal set of u
sites. Thus the bulk region in a surviving one-dimensio
epidemic never undergoes the anomalous influence of vi
sites, while it is permanently exposed to it in two dime
sions. Unfortunately, we see no way to deduce quantita
results from this heuristic argument.

V. DISCUSSION AND CONCLUSIONS

We have given heuristic—but we believe convincing
theoretical arguments for the conjecture that the threshold
critical spreading in the case of infinite memory effects
only given by the susceptibility after repeated infection,
dependent of the susceptibility of the initial virgin medium
The latter will, however, influence the detailed critical b
havior. This is strikingly similar to surface critical phenom
ena in lattice spin systems, with DP being analogous to
‘‘special’’ point @13#.

We have supported this conjecture by simulations
spreading in one- and two-dimensional lattice models.
these models we have found very clear evidence that crit
behavior for spreading is indeed changed with respect to
But while all critical exponents seemed to be affected
d52, it seems that only one of the two exponents govern
the behavior exactly atp5pc is changed. We have not stud
ied the critical behavior governing the approach top5pc .

We have argued that these results apply also to mo
with multiple absorbing states. Indeed, the main effect of

r FIG. 16. Similar to Fig. 14, but for the ratioR2(t)/t.
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multiplicity of absorbing states in these models is to cre
aneffectivememory-dependent susceptibility.~This assumes
that the ‘‘static’’ behavior of these models is in the DP un
versality class, as claimed in@15,18,19#. This might not be
strictly true, and there might be very small differences ev
in the static behavior. In that case, the effect of the multip
ity of absorbing states would be much more subtle. But
have no reason to suspect such problems.! Thus we claim
that the initial state dependence of the critical pointlocations
found in @19# is a crossover effect. On the other hand, t
nonuniversality of criticalexponentsfound there and in
@15,18# is real, though the actual values of the expone
should again be strongly influenced by crossover effects
were not correctly taken into account.

In @33#, a different model was introduced for simulatin
the changed effective susceptibility at active region bou
aries in systems with multiple absorbing states. But in c
trast to the model treated in the present paper, the mediu
site x, in this model, ‘‘forgot’’ whenever the epidemic re
ceded beyondx: Only the active sites at thecurrent bound-
ary of the epidemic ‘‘feel’’ the modified susceptibility
Ph

on

a

e

n
-
e

s
at

-
-
at

whether they have been visited before or not. This is som
what awkward to handle in two and more dimensions, th
the authors studied only one-dimensional systems. T
found that their results could not explain the phenomena s
in @15,18,19#. We believe that this is a consequence of th
specific assumptions that make the model of@33# very dif-
ferent from ours and, we believe, less natural.

We should finally point out that different results are e
pected in the case of slowly decaying memory effects. If
susceptibility relaxes after an infection to its original valu
with a power law, we expect both the location of the critic
point and the critical exponents to be modified.
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